Какое направление имеет электрический ток?

Содержание

Природа тока в металлах

Какое направление имеет электрический ток?

Нам известно, что атомы вещества состоят из ядер и вращающихся вокруг них электронов. Электроны притягиваются ядрами, и чтобы их «оторвать», требуется приложить некоторое усилие. В таком случае мы будем иметь положительно заряженное ядро и отрицательно заряженные электроны.

Получается, что чтобы в проводнике появился электрический ток, надо вырвать множество электронов из оков атомов и сопровождать их на всем пути действия тока, чтобы их не захватили новые атомы. Очевидно, что для этого потребуется довольно приличная сила. Однако, при возникновении электрического поля, ток начинает бежать в металлических проводниках без всякого усилия. Как же это получается? Какова природа электрического тока в металлах, что они могут беспрепятственно проводить ток практически без потерь?

Дело в том, что в металлах структура строения вещества такова, что частицы расположены в кристаллических решетках, образованных положительными ионами, то есть ядрами атомов. А отрицательные ионы, то есть электроны, свободно перемещаются между ядрами, не будучи связанными с ними. Заряд всех электронов в спокойном состоянии компенсирует положительный заряд ядер. Когда возникает действующее на электроны электрическое поле, они начинают двигаться в одном направлении по всей длине проводника.

Так образуется электрический ток в металлах. Скорость движения каждого конкретного электрона невелика – около нескольких миллиметров в секунду. Но скорость распространения электрического поля равна скорости света, около 300 000 км/с. Электрическое поле приводит в движение все электроны на своем пути, и ток распространяется в металлических проводах со скоростью света.

Действие электрического тока

С какой бы скоростью ни двигались электроны в металле, мы не можем увидеть это воочию – они слишком малы. Судить о наличии в проводнике тока, мы можем лишь по производимому им действию. Действие электрического тока может быть очень разнообразным. Тепловое действие тока проявляется в нагревании проводника. Это действие широко используется в электронагревательных приборах: чайниках, обогревателях, фенах.

Еще ток обладает химическим действием. В некоторых растворах при воздействии электрическим током выделяются различные вещества. Так добывают чистые вещества из солей и щелочей. Ток обладает также и магнитным действием. Причем магнитное действие тока проявляется всегда и в любых проводниках.

Заключается магнитное действие тока в том, что вокруг проводника с током образуется магнитное поле. Это поле можно уловить и измерить. Для использования магнитного действия тока сооружают спиральные обмотки из изолированных проводов и пропускают по ним ток.

Таким образом, концентрируют и усиливают магнитное действие тока и создают электромагниты.

Электричество и магнетизм вообще неразрывно связаны друг с другом. Самый простой пример: притягивание наэлектризованной расческой волос – есть не что иное, как магнитное действие электрического заряда. Человек очень активно использует  магнитные свойства тока. От выработки электроэнергии, в которой преобразуют механическую энергию в электрическую с помощью магнитов, до конкретных электроприборов, производящих обратное преобразование электричества в механическую работу – везде используется магнитное действие тока. 

Направление тока

За направление электрического тока в цепи принято направление движения положительных зарядов. А так как мы знаем, что двигается не положительный, а отрицательный заряд – электроны, то соответственно направление тока – это направление, в котором двигались бы положительные заряды, если бы они перемещались. Это направление, противоположное движению электронов.

Почему приняли такое направление? Дело в том, что когда-то не знали, за счет чего в  реальности передается электрический заряд, но электричество использовали, и надо было создавать правила и законы для расчетов. И условно приняли за направление тока направление движения положительных зарядов. А когда разобрались, уже никто не стал переписывать заново законы и правила. Поэтому так и осталось. А куда конкретно двигаются электроны, учитывают в случае необходимости. 

Нужна помощь в учебе?

Предыдущая тема: Электрическая цепь и составные её части
Следующая тема:   Сила тока: природа, формула, измерение амперметром

Нравится Нравится

Все неприличные комментарии будут удаляться.

Источник: http://www.nado5.ru/e-book/tok-v-metallakh-deistviya-toka-napravlenie-toka

Электрический ток

Какое направление имеет электрический ток?

Электрический ток образуется в веществе только при условии наличия свободных заряженных частиц. Заряд может находиться в среде изначально или же формироваться при условии содействия внешних факторов (температуры, электромагнитного поля, ионизаторов). Движение заряженных частиц хаотичны при условии отсутствия электромагнитного поля, а при подключении к двум точкам вещества, разности потенциалов превращаются в направленные — от одного вещества к другому.

Понятие, сущность и проявления электрического тока

Определение 1

Электрический ток – это упорядоченное и направленное движение заряженных частиц.

Такими частицами могут быть:

  • в газах – ионы и электроны,
  • в металлах – электроны,
  • в электролитах – анионы и катионы,
  • в вакууме – электроны (при определенных условиях),
  • в полупроводниках – дырки и электроны (электронно-дырочная проводимость).

Замечание 1

Часто используют такое определение. Электрический ток – это ток смещения, который возникает в результате изменения электрического поля во времени.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Электрический ток может выражаться в следующих проявлениях:

  1. Нагрев проводников. Выделение теплоты не происходит в сверхпроводниках.
  2. Изменение химического состава некоторых проводников. Данное проявление преимущественно можно наблюдать в электролитах.
  3. Формирование электрического поля. Проявляется у всех проводников без исключения.

Рисунок 1. Электрический ток — упорядоченное движение заряженных частиц. Автор24 — интернет-биржа студенческих работ

Классификация электрического тока

Определение 2

Электрический ток проводимости – это явление, при котором заряженные частицы движутся внутри макроскопических элементов той или иной среды.

Конвекционный ток – явление, при котором движутся макроскопические заряженные тела (к примеру, заряженные капли осадков).

Различают постоянный, переменный и пульсирующий электрические токи и их всевозможные комбинации. Однако в таких комбинациях часто опускают термин «электрический».

Существует несколько разновидностей электрического тока:

  1. Постоянный ток – это ток, величина и направление которого слабо изменяются во времени.
  2. Переменный ток – это ток, направление и величина которого прогрессивно меняются во времени. Под переменным током понимается ток, который не является постоянным. Среди всех разновидностей переменного тока основным является тот, величина которого может изменяться только по синусоидальному закону. Потенциал каждого конца проводника в данном случае изменяется по отношению к другому концу попеременно с отрицательного на положительный, и наоборот. При этом он проходит через все промежуточные потенциалы. В результате формируется ток, который непрерывно изменяет направление. Двигаясь в одном направлении, ток возрастает, достигая своего максимума, который именуется амплитудным значением. После чего он идет на спад, на какой-то период приравнивается к нулю, после чего цикл возобновляется.
  3. Квазистационарный ток – это переменный ток, который изменяется относительно медленно, для его мгновенных значений выполняются законы постоянных токов с достаточной точностью. Подобными законами являются правила Кирхгофа и закон Ома. Квазистационарный то во всех сечениях неразветвленной сети имеет одинаковую силу. При расчете цепей данного тока учитываются сосредоточенные параметры. Квазистационарные промышленные токи – это те, в которых условие квазистационарности вдоль линии не выполняется (кроме токов в линиях дальних передач).
  4. Переменный ток высокой частотности – это электрический ток, в котором уже не выполняется условие квазистационарности. Он проходит по поверхности проводника и обтекает его со всех сторон. Такой эффект получил название скин-эффект.
  5. Пульсирующий ток – это электрический ток, у которого направление остается постоянным, а изменяется только величина.
  6. Вихревые токи или токи Фуко – это замкнутые электрические токи, которые расположены в массивном проводнике и возникают при изменении магнитного потока. Исход из этого, вихревые токи являются индукционными. Чем скорее магнитный поток изменяется, тем сильнее становятся вихревые токи. По проводам они не текут по определенным путям, а замыкаются в проводнике и образуют вихреобразные контуры.
Читайте также  В какой цепи возникает резонанс токов?

Благодаря существованию вихревых токов, осуществляется скин-эффект, когда магнитный поток и переменный электрический ток распространяются по поверхностному слою проводника. Из-за нагрева вихревыми токами происходит потеря энергии, особенно в сердечниках катушек переменного тока.

Чтобы уменьшить потерю энергии для вихревых потоков применяется деление магнитных проводов переменного тока на отдельные пластины, которые изолированы друг от друга и располагаются перпендикулярно по направлению вихревых токов.

Из-за этого ограничиваются возможные контуры их путей, и стремительно уменьшается величина этих токов.

Характеристики электрического тока

Исторически так сложилось, что направление движения положительных зарядов в проводнике совпадает с направлением тока. Если естественными носителями электрического тока являются отрицательно заряженные электроны, то направление тока будет противоположно по направлению положительно заряженных частиц.

Скорость заряженных частиц напрямую зависит от заряда и массы частиц, материала проводника, температуры внешней среды и приложенной разности потенциалов. Скорость целенаправленного движения составляет величину, которая значительно меньше скорости света. Электроны за одну секунду перемещаются в проводнике за счет упорядоченного движения меньше, чем на одну десятую миллиметра. Но, несмотря на это, скорость распространения тока приравнивается скорости света и скорости распространения фронта электромагнитных волн.

То место, где меняется скорость перемещения электронов после изменения напряжения, перемещается со скоростью распространение электромагнитного колебания.

Основные типы проводников

В проводниках в отличие от диэлектриков есть свободные носители некомпенсированных зарядов. Они под воздействием силы электрических потенциалов приходят в движение и формируют электрический ток.

Вольтамперная характеристика или, иными словами, зависимость силы тока от напряжения является главной характеристикой проводника. Для электролитов и металлических проводников она принимает простейший вид: сила тока прямо пропорциональна напряжения. Это закон Ома.

В металлах носителями тока являются электроны проводимости, которые рассматриваются как электронный газ. В них отчетливо проявляются квантовые свойства вырожденного газа.

Плазма – это ионизированный газ. В данном случае при помощи ионов и свободных электронов переносится электрический заряд. Свободные электроны образуются под воздействием ультрафиолетового и рентгеновского излучения или нагревания.

Электролиты – это твердые или жидкие системы и вещества, в которых присутствует заметная концентрация ионов, что обуславливает прохождение электрического тока. В процессе электролитической диссоциации образуются ионы. Сопротивление электролитов при нагревании падает из-за роста числа молекул, которые разложились на ионы. В результате прохождения электрического тока сквозь электролит, ионы приближаются к электродам и нейтрализуются, оседая на них.

Физические законы электролиза Фарадея определяют массу вещества, который выделился на электродах. Также существует электрический ток электронов в вакууме, применяемый в электронно-лучевых приборах.

Источник: https://spravochnick.ru/fizika/elektricheskiy_tok/

Проводники, полупроводники и изоляторы

Не все тела одинаково проводят электричество. Тела, хорошо проводящие электричество, называются ПРОВОДНИКАМИ, а плохо проводящими электричество – ИЗОЛЯТОРАМИ или ДИЭЛЕКТРИКАМИ. Существует и промежуточная группа тел, обладающая слабой способностью проводить электричество – ПОЛУПРОВОДНИКИ.

Поэтому абсолютно естественно, что провод, которым монтируется электрика в доме состоит из металлической части, как правило, меди или алюминия, обернутой в резиновое изоляционное покрытие, которое не проводит электрический ток. Классификация проводников показывает, что они бывают самые разные, но принцип их устройства будет всегда один: внутри проводящий материал, снаружи диэлектрик.

Проводники первого рода и проводники второго рода

Проводники делятся на проводники первого рода и проводники второго рода. Проводники первого рода – металлы и их сплавы, а проводники второго рода — водные растворы кислот, солей и щелочей, сильно разряженные газы.

Твердые и жидкие проводники, прохождение через которые электрического тока не вызывает переноса вещества в виде ионов, называются проводниками первого рода. Электрический ток в проводниках первого рода осуществляется потоком электронов (электронная проводимость). К таким проводникам относятся твёрдые и жидкие металлы и некоторые неметаллы (графит, сульфиды цинка и свинца). Их удельное сопротивление r лежит в пределах 10–8 – 10–5 Ом×м. Температурный коэффициент проводимости отрицателен, то есть с ростом температуры электропроводность уменьшается.

Вещества, прохождение через которые электрического тока вызывает передвижение вещества в виде ионов (ионная проводимость), называются проводниками второго рода. Типичными проводниками второго рода являются растворы солей, кислот и оснований в воде и некоторых других растворителях, расплавленные соли и некоторые твёрдые соли. Температурный коэффициент электропроводности положителен.

Деление проводников в зависимости от типа проводимости (электронная или ионная) является условным. Известны твёрдые вещества со смешанной проводимостью, например Ag2S, ZnO, Cu2O и др. В некоторых солях при нагревании наблюдается переход от ионной проводимости к смешанной (CuCl).

Какие электроны называются свободными?

Если мы обратимся к основам электротехники, то мы вспомним, что все тела состоят из атомов. Атом в свою очередь сам состоит из миниатирных частиц: нейтронов, протонов и электронов. В зависимости от того, насколько сильна связь электрона с атомным ядром, лучше или хуже выражена проводимость материала.

К диэлектрикам относятся резина, стекло, слюда, фарфор, смола и многие другие материалы. Физическая сущность этих явлений заключается в следующем. В диэлектриках все электроны прочно удерживаются ядрами атомов. В проводниках же, например в металлах, существуют электроны, слабо связанные с ядрами. Эти электроны наиболее удалены от ядер и под воздействием электрического поля соседних ядер отрываются, переходя с внешних орбит одних атомов к другим, при этом они свободно или почти свободно перемещаются по проводнику. Такие электроны называются СВОБОДНЫМИ ЭЛЕКТРОНАМИ.

Скорость движения электронов

Движение свободных электронов в проводнике происходит беспорядочно, и скорость их движения определяется тепловым состоянием проводника. Но если на проводник подействовать силами внешнего электрического поля, создав на его концах разность потенциалов, то под действием этих сил движение электронов будет упорядочено – направлено в одну сторону. Такое движение свободных электронов в металлическом проводнике называется ЭЛЕКТРОННЫМ ТОКОМ, а способность проводника проводить электронный ток – ЭЛЕКТРОННОЙ ПРОВОДИМОСТЬЮ.

В проводнике второго рода имеет место ИОННЫЙ ТОК, который возникает также под влиянием сил электрического поля. Этот ток представляет собой направленное движение положительных и отрицательных ионов. Способность проводников проводить ионный ток называется ИОННОЙ ПРОВОДИМОСТЬЮ.

Направление электрического тока

В диэлектриках имеет место так называемый ТОК СМЕЩЕНИЯ, который возникает в результате смещения электронов в атомах под действием сил внешнего электрического поля. В вакууме ток создается потоком электронов, вылетающих с поверхности металлического проводника, а в разряженных газах – потоком электронов и ионов. В обоих случаях направленное движение электронов и ионов также происходит под влиянием внешнего электрического поля. Таким образом, ЭЛЕКТРИЧЕСКИЙ ТОК в проводящих средах есть направленное движение потока свободных заряженных частиц под действием сил внешнего электрического поля.

Читайте также  Какие материалы не проводят электрический ток?

Направление движение свободных электронов можно получить, соединив, например, один конец металлической проволоки с металлическим шаром, заряженным отрицательно, а другой — с шаром, заряженным положительно. Электроны, имеющиеся в избытке на отрицательно заряженном шаре, направляются к положительно заряженному шару с недостатком электронов, т.е.

по проволоке пройдет электрический ток. Он будет течь до тех пор, пока разность потенциалов между разноименно заряженными шарами не станет равной нулю. В нашем примере это произойдет почти мгновенно.

Если же разность потенциалов между этими шарами поддерживать постоянно, то по проволоке будет идти электрический ток постоянный по величине и направлению.

Скорость распространения электрического поля

Условно за направление электрического тока принято считать направление, обратное движению свободных электронов, т.е. направление тока от плюса к минусу. Скорость же распространения электрического тока по проводнику равна скорости распространения света в вакууме, т.е. 300 000 км/сек. Эту скорость электронов нельзя смешивать со скоростью поступательного движения электронов при электрическом токе, которая равна всего нескольким миллиметрам в секунду.

Как получить электрический ток?

Для получения электрического тока существуют специальные устройства, которые непрерывно поддерживают разность потенциалов на концах проводника. Эти устройства обычно называются ИСТОЧНИКАМИ ТОКА или ИСТОЧНИКАМИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ. Основными источниками тока являются:

  • Механические источники электрического тока – ЭЛЕКРИЧЕСКИЕ ГЕНЕРАТОРЫ, в которых механическая энергия преобразуется в электрическую.
  • Химические источники электрической энергии — ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ И АККУМУЛЯТОРЫ. В них химическая энергия преобразуется в электрическую.
  • Тепловые источники электроэнергии – ТЕРМОЭЛЕМЕНТЫ, в которых тепловая энергия преобразуется в электрическую.
  • В настоящее время также находят применение лучистые и атомные источники электрической энергии. Сначала в электрическую энергию преобразуется световая, а затем – ядерная энергия.

Независимо от того, по какому принципу работает тот или иной источник электрического тока, в каждом из них происходит процесс разделения электрических зарядов физических тел и вместе с тем процесс преобразования какого-либо вида энергии в электрическую.

Сегодня уже нет смысла рассуждать о пользе электричества. Оно используется повсеместно. Поэтому просто необходимо понимать природу этого явления, чтобы оно не причинило ущерб. Нужно принимать все меры предосторожности, чтобы не возникло короткого замыкания, вследствие которого может произойти пожар. И, конечно, надо быть крайне аккуратными, чтобы не получить удар электричеством, так как поражение электрическим током может быть смертельно опасным для жизни.

Во избежании неприятностей и опасных ситуаций для подключения или ремонта электропроводки вызывайте профессионального мастера. Созвонитесь с нашим оператором и закажите вызов электрика в Юбилейный или воспользуйтесь услугами электрика в городе Мытищи. А если нужен электромонтаж в Сергиевом Посаде в квартире или деревянном доме, то пригласите мастера-оценщика для составления сметы, а также посмотрите видео по электрике, выполненной нашими мастерами.

Если материал этой статьи был для вас интересен и полезен, поделитесь им со своими знакомыми в социальных сетях. Возможно, кому-то эта информация очень пригодится. C уважением, Королевский электрик в Щёлково.

Источник: http://elektrik-korolev.ru/electrotok.html

Конспект

Какое направление имеет электрический ток?

Электрический ток — это упорядоченное движение заряженных частиц.  Для того чтобы в проводнике существовал электрический ток, необходимы два условия: 1) наличие свободных заряженных частиц, 2) электрическое поле, которое создаёт их направленное движение. Проходя по цепи, происходит действие электрического тока (тепловое, магнитное, химическое).

При существовании тока в разных средах: в металлах, жидкостях, газах — электрический заряд переносится разными частицами. В металлах этими частицами являются электроны, в жидкостях заряд переносится ионами, в газах — электронами, положительными и отрицательными ионами.

Дистиллированная вода не проводит электрический ток, поскольку она не содержит свободных зарядов. Если в воду добавить поваренную соль или медный купорос, то в ней появятся свободные заряды, и она станет проводником электрического тока.

Газы в обычных условиях тоже не проводят электрический ток, так как в них нет свободных зарядов. Однако если в воздушный промежуток между двумя металлическими пластинами, соединёнными с источником тока, внести зажжённую спичку или спиртовку, то газ станет проводником и гальванометр зафиксирует протекание тока по цепи.

Постоянный электрический ток

Постоянный электрический ток — это электрический ток, который с течением времени не изменяется по величине и направлению. Постоянный ток является разновидностью однонаправленного тока (англ. direct current), т.е. тока, не изменяющий своего направления. Часто можно встретить сокращения DC от первых букв англ. слов, или символом по ГОСТ 2.721-74.

На рисунке красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени t, а по вертикальной — масштаб тока I или электрического напряжения U. Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).

При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов). Постоянный электрический ток — это постоянное направленное движение заряженных частиц в электрическом поле.

Источник тока

Направленное движение зарядов обеспечивается электрическим полем. Электрическое поле в проводниках создаётся и поддерживается источником тока. В источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц. Эти частицы накапливаются на полюсах источника тока. Один полюс источника заряжается положительно, другой — отрицательно. Между полюсами источника образуется электрическое поле, под действием которого заряженные частицы начинают двигаться упорядоченно.

В источнике тока совершается работа при разделении заряженных частиц. При этом различные виды энергии превращаются в электрическую энергию. В электрофорной машине в электрическую энергию превращается механическая энергия, в гальваническом элементе — химическая.

Действие электрического тока

Электрический ток, проходя по цепи, производит различные действия. Тепловое действие электрического тока заключается в том, что при его прохождении по проводнику в нём выделяется некоторое количество теплоты. Пример применения теплового действия тока — электронагревательные элементы чайников, электроплит, утюгов и пр. В ряде случаев температура проводника нагревается настолько сильно, что можно наблюдать его свечение. Это происходит в электрических лампочках накаливания.

Магнитное действие электрического тока проявляется в том, что вокруг проводника с током возникает магнитное поле, которое, действуя на магнитную стрелку, расположенную рядом с проводником, заставляет её поворачиваться. Благодаря магнитному действию тока можно превратить железный гвоздь в электромагнит, намотав на него провод, соединённый с источником тока. При пропускании по проводу электрического тока гвоздь будет притягивать железные предметы.

Химическое действие электрического тока проявляется в том, что при его прохождении в жидкости на электроде выделяется вещество. Если в стакан с раствором медного купороса поместить угольные электроды и присоединить их к источнику тока, то, вынув через некоторое время эти электроды из раствора, можно обнаружить на электроде, присоединённом к отрицательному полюсу источника (на катоде), слой чистой меди.

Некоторые источники утверждают, что существует также механическое действие (например, рамка, по которой течет ток, поворачивается, если её поместить между полюсами магнитов) и световое (светодиоды).

Конспект по по физике в 8 классе: «Постоянный электрический ток. Действие электрического тока».

Читайте также  Как диодный мост выпрямляет ток?

Следующая тема: «Сила тока. Напряжение»

Источник: https://uchitel.pro/%D0%BF%D0%BE%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%BD%D1%8B%D0%B9-%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9-%D1%82%D0%BE%D0%BA/

Как течет ток

Какое направление имеет электрический ток?

Электрический ток – одно из основных благ цивилизации, без которого жизнь современного человечества была бы невозможна.

Применяемый во всех областях современного мира (от простого электрочайника, встречающегося на кухни почти любой домохозяйки до мощной дуговой электроплавильной печи) он делает жизнь людей более удобной и простой.

В то же самое время очень мало из тех, кто пользуется многочисленными электроприборами, задумывается над природой данного явления. В частности, не все понимают, что оно собой представляет, на протекании каких процессов основывается, какое направление течения заряженных частиц в проводниках и электрических цепях.

Движение зарядов в проводнике

Для того чтобы разобраться в том, как течет ток, необходимо понять его физическую сущность, основанную на атомарно-молекулярной теории строения материи, узнать, какие условия необходимы для его возникновения и существования, какие виды токов бывают, и какими характеристиками они обладают.

Физическая сущность течения тока в цепи

Наличие тока в цепи обусловлено направленным перемещением заряженных частиц. В твердых телах течение тока создается движением отрицательно заряженных электронов, в газах и жидкостях – положительными ионами. В таких широко распространенных веществах, как полупроводники, электрический ток возникает при движении частиц –  электронов и «дырок» (положительно заряженных частиц, представляющих собой атомы с недостающим количеством электронов на внешних уровнях).

Основными условиями возникновения и существования электрического тока являются:

  • Наличие носителей зарядов – перемещающиеся по проводнику, газу или электролиту частицы;
  • Создаваемое определенным источником питания электрическое поле – без данного силового поля движение свободных носителей зарядов будет хаотичным, не имеющим определенного направления;
  • Замкнутая цепь – направленное движение зарядов возможно только в замкнутых цепях. Так, например, состоящий из источника питания ключа (переключатель) и лампочки накаливания ток будет протекать только тогда, когда ключ, располагающийся в разрыве проводника между одним из полюсов питания и лампой, находится во включенном состоянии, позволяя носителям заряда перемещаться по замкнутой цепи от отрицательного полюса батареи к положительному.

Электрический ток и поток электронов

Единица измерения силы тока

Разобравшись в том, что в большинстве случаев носителями электрических зарядов являются электроны, необходимо понять, почему они движутся. Для этого необходимо заглянуть в микромир частиц – атомов и понять их строение, физические процессы, происходящие с ними.

Атом состоит из ядра и вращающихся вокруг него множества электронов, количество которых зависит от суммарного заряда ядра. Электроны передвигаются по определенным траекториям – орбиталям (уровням). При этом те из них, которые располагаются ближе всего к ядру, удерживаются им очень сильно и не участвуют в химических реакциях и физических процессах. Те частицы, которые находятся на внешних уровнях, являются активными и определяющими способность того или иного атома к химическому взаимодействию и образованию свободных зарядов. Их называют валентными.

Активность и способность атомов к отщеплению свободных электронов зависят от количества частиц на внешних уровнях. Так, у одних веществ многочисленные электроны удалены от ядра, поэтому срываются со своих орбиталей и начинают устремляться к другим атомам, в результате чего наблюдается перемещение свободных зарядов. При подаче электрических потенциалов (напряжения) движение электронов становится направленным, появляется электрический ток. Поэтому твердые тела (например, металлы) с большим количеством свободных электронов являются проводниками.

У диалектиков частицы, способные переносить электрический заряд, отсутствуют – у них мало электронов на внешних уровнях, поэтому они не могут срываться, переходя сначала в хаотичное, потом и в направленное движение.

Промежуточное положение между диэлектриками и проводниками занимают полупроводники, электропроводность которых зависит от внешних факторов (температуры, освещенности и т.д.).

Электрический ток в параллельной цепи

Закон Ома для неоднородного участка

В электрических схемах предусмотрены параллельные и последовательные соединения элементов. При параллельном соединении, например, резисторов, напряжение одинаково для каждого из них, а сила тока, протекающего через каждый элемент, пропорциональна его сопротивлению. Чтобы определить величину тока через каждый компонент при параллельной комбинации их соединения, используют закон Ома.

Параллельная электрическая цепь

Вид цепи и напряжение

В зависимости от направления протекания тока и особенностей напряжения, различают два вида электрических цепей:

  • Цепи постоянного тока;
  • Цепи переменного тока.

Напряжение цепей постоянного тока является работой, совершаемой электрическим полем в ходе перемещения пробного плюсового заряда из точки A в точку Б. Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах. В таких цепях принято считать, что ток идет от плюса к минусу (от плюсового полюса к минусовому).

На заметку. В реальности ток течет не от плюса к минусу, а, наоборот, от минуса к плюсу. Сформировавшееся ошибочное представление о направлении течения именно от плюса не стали изменять и оставили для удобства понимания физической сущности данного явления.

Для цепей переменного тока характерны такие виды и значения напряжения, как:

  • мгновенное;
  • амплитудное;
  • среднее значение;
  • среднеквадратическое;
  • средневыпрямленное.

Напряжение в таких цепях – это достаточно сложная функция времени. Грубо говоря, ток в них течет от фазного провода, проходит через нагрузку и частично уходит в нулевой (течет от фазы к нулю)

Виды токов: постоянные и переменные

В зависимости от изменения направления протекания заряженных частиц, различают следующие виды токов:

  • Постоянный – формируется движением заряженных частиц в одном направлении. Его основные характеристики (сила тока, напряжение) имеют постоянные значения и не изменяются во времени;
  • Переменный – направление перемещения зарядов при таком виде движения заряженных частиц периодически меняется. Количество изменений направления движения за единицу времени, равную одной секунде, называется частотой тока и измеряется в Герцах. Так, например, значение данной характеристики в обычной бытовой электрической цепи равно 50 Гц. Это означает, что в течение 1 секунды движущиеся по цепи электроны меняют свое направление 50 раз, вызывая тем самым такое же количество изменений напряжения в фазном проводе от 220 до 0 В.

Основные характеристики переменного тока

Двунаправленное перемещение зарядов

Наряду с упорядоченным движением носителей зарядов (электронов), в проводниках наблюдается также незначительный обратный процесс – условное перемещение положительных зарядов, потерявших отрицательные частицы атомов. Вместе с основным током данное явление получило название двунаправленное перемещение зарядов. Особенно оно ярко проявляется при протекании электричества через электролиты (явление электролиза).

Двунаправленное перемещение зарядов в аккумуляторной батарее

Значение перемещения электронов в электрической схеме

Понимание того, как идет в цепи ток, необходимо при составлении такого графического изображения расположения электронных деталей, как схема. Важно понимать, откуда течет ток, для того чтобы правильно располагать на схеме, затем соединять различные радиоэлектронные элементы. Если для таких радиодеталей, как конденсатор, резистор, полярность подключения не имеет значения, то полупроводниковый транзистор,

диод необходимо размещать на схеме и затем запитывать, учитывая направление движения тока, иначе они и собираемое с их использованием устройство, электронный блок не будут правильно функционировать.

Таким образом, знание физической сущности направления течения заряженных частиц в проводнике, электролите, полупроводнике позволит любому человеку не только расширить свой кругозор, но и применять его на практике при монтаже электропроводки, пайке различных электронных блоков и схем. Также подобная информация поможет разобраться в том, почему произошла поломка того или иного электроприбора, как ее устранить и предотвратить в будущем.

Источник: https://amperof.ru/teoriya/kak-techet-tok.html